Multiphysics simulations and validations of a Target Ion Source system for the production of Radioactive Ion Beams

A. Monetti¹,², M. Manzolari¹, G. Meneghetti³, A. Andrichetto¹, M. Calderolla¹, M. Rossignoli¹, D. Scarpa¹, S. Corradetti¹, J. Vasquez¹, G. Prete¹.

1. INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (PD), Italy
2. Department of Industrial Engineering, University of Padova, Via Venezia 1 – 35131 Padova (Italy)

The SPES project (Selective Production of Exotic Species) aims to develop a facility at Legnaro National Laboratories (LNL) to produce Radioactive Ion Beams (RIB). The facility operates according to the isotope separation on-line technique (ISOL): the driver, a cyclotron, supplies a 200-500 MeV proton beam to the SPES Front-End producing RIBs, thanks to the Target-Ion source system. To obtain higher ion beam energies, a series of subsystems (Beam Cooler, HRMS, Charge Breeder, RFQ) are being designed to allow the use of the post-acceleration PIAVE-ALPI.

The SPES facility

- ALPI building
- Experimental Hall 3
- SPES Front-End

The core of the facility: the Target Ion Source (TIS) complex

- Target Chiller
- Dipoles
- Quadrupoles
- Diagnostics Subsystem 1
- Wien Filter

The off-line Front-End installed at Legnaro National Laboratories

- Proton beam: not available: cyclotron is arriving in 2014

Main components of the Front-End

- Dipoles: maintain the beam centered
- Quadrupoles: focus the beam
- Wien filter: speed separator
- Diagnostic subsystem 1 & 2: reveal beam position and current intensity before and after the Wien filter
- Emittance meter: measure of beam emittance

Experimental apparatus used to test the SPES target heater

1. SPES vacuum chamber
2. Electrical feedthrough
3. Turbomolecular pump
4. Cooling system
5. Pyrometer n°1
6. Pyrometer n°2
7. Kodial window n°1
8. Kodial window n°2

FEM model of the SPES target heater

- Ambient temperature
- Emissivity
- Electrical boundary conditions

Solution of FEM model

Comparison: Experimental data vs FEM model

A typical problem of beam transport: the Wien Filter

The Wien velocity filter: operating principle

Average speed of the particles after extraction electrode:

\[v_{\text{ion}} = \sqrt{\frac{2q_{\text{ion}} V_{\text{extr}}}{m_{\text{ion}}}} \]

Lorentz force:

\[F = q(E + v \times B) \]

In the Wien Filter:

\[v_{\text{ion}} = E \times B \]

\[v_{\text{ion}} = \frac{E}{B} \]

\[E \parallel B \]

Ferromagnetic Core

In the Wien Filter:

\[v_{\text{ion}} = E \times B \]

\[v_{\text{ion}} = \frac{E}{B} \]

\[E \parallel B \]

Speed of the particles with unchanged trajectory by the Wien filter:

\[v_{\text{ion}} = \frac{E}{B} \]

Mass of the particles selected by the Wien filter:

\[m_{\text{ion selected}} = \frac{2q_{\text{ion}} V_{\text{extr}}}{B^2} \]

Results with SIMION 8.0 (ion optics simulation program to calculate ion trajectories)

Ion trajectories calculated by SIMION 8.0

Beam from TIS

Wien Filter section in SIMION

Out of the bunker

Internation CAE Conference
21st - 22nd October 2013 – Pacengo del Garda, Verona, Italy