

Multiphysics simulations and validations of a Target Ion Source system for the production of Radioactive Ion Beams

A. Monetti^{1,2}, M. Manzolaro¹, G. Meneghetti², A. Andrighetto¹, M. Calderolla¹, M. Rossignoli¹, D. Scarpa¹, S. Corradetti¹, J. Vasquez¹, G.Prete¹.

1. INFN, Laboratori Nazionali di Legnaro, Viale dell'Università 2, 35020 Legnaro (PD), Italy

2. Department of Industrial Engineering, University of Padova, Via Venezia 1 – 35131 Padova (Italy)

The SPES project (Selective Production of Exotic Species) aims to develop a facility at Legnaro National Laboratories (LNL) to produce Radioactive Ion Beams (RIB). The facility operates according to the isotope separation on-line technique (ISOL): the driver, a cyclotron, supplies a 200 µA 40 MeV proton beam to the SPES Front-End producing RIBs, thanks to the Target-Ion source system. To obtain higher ion beam energies, a series of subsystems (Beam Cooler, HRMS, Charge Breeder, RFQ) are being designed to allow the use of the post-acceleration PIAVE-ALPI.

A typical problem of beam transport: the Wien Filter

