Digital Lifecycle Management (DLM)

RLW Process Monitoring for Quality & Productivity Improvement

Dr PKS Prakash, Dr Pasquale Franciosa, Prof. Darek Ceglarek

The research aims to develop methodologies to link the process signals with the process Key Product Indicators (KPI's) to enhance the process monitoring capability for quality and productivity improvement in the Remote Laser Welding (RLW) process.

Introduction

Process-induced variation has significant impact on product quality and productivity. The complexity of products coupled with increasing flexibility and responsiveness in processes enhances the challenges of process control. For example, in the Remote Laser Welding (RLW) process several Key Process Indicators (KPI's) such as penetration, interface width, topsurface concavity and bottom surface concavity are used to evaluate the product quality. The efficient detection of any variation in the KPI's needs to be captured in real time to improve the quality and productivity of the process. The current research explores 4 options to link process monitoring with weld KPI's.

Option 2: Signal to KPIs (analytical-based)

This option allows us to analytically correlate measured temperature and stitch penetration (this could also include interface width).

The preliminary model will be based on a 1-dimensional assumption. This means that only the variation along the thickness axis is modelled.

The two main phases occurring during the RLW joining process are considered: (i) melting phase (Stefan problem); (ii) vaporisation (plasma generation due to high power/temperature field). If the analysis fails to predict KPI's with a satisfactory confidence level, then FEM-based model will be developed.

Option 1: SIGNAL to KPI

This option links the in-line measurement information captured using a camera and photodiode to link with KPI's.

Online process monitoring

Off-line KPI measurements

Option 3: RSM (Response Surface Method) to KPIs (on-line gap measurement)

This option links the on-line signals with part-to-part gap. The methodology exploits spectroscopic tests to evaluate the optical radiation from the welding plasma/plume. Acquired spectra are then analysed using a multivariate data analysis approach in order to ensure gap monitoring.

Monitoring information used to link with gap **Temperature captured** Plasma captured using Plume colour using using Photodiode Photodiode camera

KPIs (off-line Option RSM 4: to gap measurement)

This option links the off-line measurement data to KPI's. Gap

distribution estimated combining off-line be by can measurement gauges and simulation tools: (i) measurement of single part before assembly; (ii) generation of variation in sheetmetal parts, based on 3D-DCT approach; (iii) generation of simulation assembly stack-up (including locators, clamps, dimples), based on VRM (Variation Response Method) approach; (iv) estimation of part-to-part gap.

It may be possible to obtain KPI's using the response surface models. These models define the KPIs in terms of: power, speed, material stack-up and gap. This option offers the possibility of using the gap distribution data for fixture Root Cause Analysis (RCA).

For more information please contact Prof. Darek Ceglarek (d.j.ceglarek@warwick.ac.uk). Also visit http://www.rlwnavigator.eu/

